欧洲杯线上买球史玉升教授团队近年来在Materials Today, Bioactive Materials, Acta Materialia, Engineering, Applied Materials Today等期刊上发表系列文章,发展了多场耦合的超材料结构设计方法,建立了仿生设计、有限元仿真、结构计算、实验验证与性能预测等模型,突破了多性能耦合设计约束限制,拓展了多性能设计与调控空间,为超材料设计与增材制造技术在航空航天、生物医疗等领域的应用奠定了理论基础。
传统结构设计大多面向力学性能优化,在保证力学性能的同时实现轻量化。随着高端制造业的发展,构件面临极端服役环境,具有复杂化、整体化和多功能属性。多物理场耦合的多功能超材料设计逐渐发展起来。超材料结构往往极端复杂,具有宏微观跨尺度特点,传统制造技术难以实现,增材制造技术在制造这类复杂结构方面具有显著优势。
团队在材料类期刊Materials Today上系统阐述了力学、声学等各类超材料基本原理和典型应用,介绍了典型超材料设计方法与增材制造工艺的研究进展,讨论了增材制造多场耦合超材料性能、超材料在设计方法方面的局限性、增材制造技术缺点以及超材料的发展趋势(Mater. Today, 2021, 50, 303-328)。
图1 超材料分类及典型应用
1、力学超材料
以功能为导向的结构设计,具有成本效益高、省时等优点,拥有较大的发展潜力。通过为给定单元和给定区域构造边界条件与优化目标,可拓扑设计出新型功能结构。团队提出了通过均匀化应变拓扑设计最大体模量力学微结构方法,并利用激光选区熔化(SLM)成功制备。通过准静态压缩试验,研究了拓扑优化超材料的力学性能和能量吸收能力。结果表明,随着晶格微结构单元数的增加,结构破坏机制从逐层断裂转变为45°倾斜断裂。拓扑优化的晶格结构的相对弹性模量为0.037,优于大多数已报道的晶格结构,设计的晶格结构在0.15应变下能量吸收效率达67.9%(J. Manuf. Process., 2020, 56: 1166–1177)。
即便拥有先进的拓扑优化设计技术,当前的力学超材料性能仍远远落后于许多生物结构。受中空结构的强韧性竹子启发,通过SLM成形基于八重桁架力学超材料。在数值模拟的指导下,通过内外直径来实现仿生力学超材料轻量化,在低密度(1.25 g/cm3)下获得高压缩比强度(87.19 kN•m/kg),且不会在八重桁架结构配置中失去各向同性(di =0.59 mm,do=1.10 mm)。研究成果提供了一种仿生设计策略,实现具有各向同性及轻质高强力学的超材料设计与制备(Appl. Mater. Today, 2022, 26, 101268)。
图2 基于晶格的力学超材料灵感来自原子的堆积和竹子的中空特征。(A) 晶格原子的微观形态;(B-C)竹子的宏观和微观形态特征;(D)仿生八重桁架力学超材料
2、声学超材料
吸声超材料在低频噪声吸收领域有着重要意义,传统吸声材料被制备后,其结构也随之固定,无法根据外界噪声频率变化做出相应吸收能力的调整。团队基于声音频率共振消声原理,通过设计迷宫式结构,采用FDM成形了吸声性能可调的低频吸声超材料,根据外接声波频率变化而动态调整结构,实现不同频率噪声的吸收,吸声频率在298-379 Hz宽频范围内可调(Chin. J. Mech. Eng.: Addit. Manuf. Front., 2022, 100036)。
五模超材料是由周期性单胞组成的复杂结构,具有水或流体等有效物理性质,可有效调控水下声波的传输路径。团队研究了模拟流体的结构设计、五模超材料的形态特征、有限元法预测的应力分布、力学性能和变形机理;提出了一种两步优化策略设计五模超材料,建立了水下声波频散设计方法,研究成果在中船重工实现了原理验证(Engineering, 2020, 6, 56-67; Compos. Struct., 2019, 226, 111199)。
图3 五模超材料类流体声学性能结果。(A)块体钛合金声场云图;(B)五模超材料声场云图;(C)实验装置示意图;(D)总散射界面,定义为各方向散射功率与平面波入射功率的比值
3、热学超材料
轻质高强兼具散热吸能超材料在航空航天和汽车应用中具有重要意义。团队受柚皮对果肉屏蔽保护的启发,提出了柚皮微结构仿生多面体超材料设计方法,实现了优异的散热和吸能效果。在实验和数值模拟的指导下,具有圆形支柱的超材料在Re=7000–30000时具有最高的努塞尔数、最低的压降和摩擦系数,表现出更高的散热指数;在0.92孔隙率下,热效率系数超过1,表现出较强的隔热能力。此外,具有圆形支柱的仿生多面体结构的比能量吸收超越传统点阵结构,在燃气轮机和冷却结构上有着重要应用前景(Adv. Mater. Technol. 2022, 2200076)。
图4 受柚皮图形启发的多面体晶格结构的形态演变:(A)自然界中的柚子;(B)柚皮的形态;(C)受柚皮图形启发的多面体单元;(D)具有各种横截面形状的设计支柱
4、生物超材料
孔隙率、模量、骨组织再生、应力屏蔽是骨支架设计中重点考虑的约束条件,团队提出了一种双锥支柱设计策略,减少类金刚石多孔金属生物材料的应力屏蔽,同时保持不变的孔隙率。设计的生物超材料骨支架的弹性模量和屈服强度,与传统金刚石晶格相比分别低41.46%和46.42%,有利于骨支架力学性能与宿主骨匹配,避免了应力屏蔽(Int. J. Mech. Sci., 2021, 197, 106331)。利用五模超材料构建骨支架来平衡孔隙率、力学与传质等多项性能。与传统金属生物材料相比,五模超材料生物超材料骨支架具有分级的孔隙分布、合适的强度等特点,显著提高了细胞接种效率、渗透性和耐冲击能力,促进了体内成骨,在细胞增殖和骨再生方面有着广阔的应用前景(Acta Biomater., 2020, 112, 298-315;Bioact. Mater., 2022, in press)。团队提出基于板格结构超材料设计新型骨支架,这类支架具有的平面压力状态不仅提升了力学性能,有效解决了传统桁架结构骨支架中普遍存在的应力集中问题。模拟与实验结果表明,本研究成果提出的板格超材料骨支架具有与人骨相匹配的力学与传质性能,通过各向异性特征对板格超材料骨支架的力学与传质性能的调控范围分别高40%和45%。上述发现为新型骨支架的设计与广泛应用提供重要参考(Acta Biomater., 2022, 148: 374-388)。
图5 海胆棘及其仿生生物超材料支架的拓扑形态:海胆棘的针状外观和梯度孔隙的内部结构。(A)光学图像显示了海胆脊椎的自然特征;(B)微观计算机断层扫描(CT)图像在水平视图和纵向视图中显示内部分级孔隙度;(C)SEM图像在(c1-c2)剖面图中显示了精细的内部形态;(D)植入物内多孔支架位置示意图;(E)仿生梯度生物五模超材料支架;(F) 与水平视图中的均匀支柱相比,纵向视图和锥形支柱拓扑中梯度密度的几何特征
5. 仿晶格超材料
受晶体材料中Hall-Petch关系启发,团队构建了具有解耦机械和质量传输特性的晶格超材料,以满足人工骨支架的需要。压缩实验和传质计算结果表明,纵横比为1和至少4个单元的晶格超材料具有最优的综合性能。该仿晶格结构的创新设计方法为开发广泛工程应用的多场耦合超材料提供了无限可能(Acta Mater. 2022, in press)。团队提出了一种模仿晶体结构各向异性超材料设计策略,通过构建具有不同的晶面(取向:[001]、[110]和[111])和晶向(旋转度:15°/Step)的晶格超材料,实现了弹性响应和质量传输性能的独立调控。结果显示,力学性能和传质性能的耦合关系减弱,对晶格超材料晶面和取向方向具有方向依赖性(Compos. Part B, 2022, 236, 109837)。
图6 仿晶格超材料生物多孔支架设计示意图。(A)用于修复骨缺损的人工生物医学支架示意图,其中需要同时优化力学和传质性能;(B)紧密形式排列的金刚石原子架构;SLM制造(C)Al-Cu-Mg和(D)Ti/Al-Cu-Mg样品侧面的EBSD(电子背散射衍射)取向图;(E)受金刚石原子启发,具有几何可设计性的金刚石微晶格;(F)柱状金刚石微晶格;(G)等轴金刚石微晶格
主要作者简介:
史玉升,欧洲杯线上买球华中学者领军岗特聘教授。现任数字化材料加工技术与装备国家地方联合工程实验室(湖北)主任,教育部创新团队负责人,国防科技创新特区主题专家组首席科学家。 担任Smart Manufacturing等多个期刊编委。国内外发表论文200余篇,主编出版专著教材8部,主持国家科技支撑计划、国家重点研发计划、02和04科技重大专项、863、国家自然科学基金、国际合作等科研项目20余项。在增材制造领域,获中国十大科技进展1项、中国智能制造十大科技进展1项、国家技术发明二等奖1项、科技进步二等奖各2项、省部级一等奖8项、国际发明专利奖4项、湖北省优秀专利奖1项、湖北省专利金奖1项、中国和湖北高校十大科技成果转化项目各1项,获发明专利40多项并实现了产业化。研究成果被国内外1000多家用户所采用,不但服务于我国,而且也出口美英德等国。
宋波,欧洲杯线上买球教授。教育部联合基金创新团队项目负责人,国防创新特区“4D打印技术”主题专家组办公室主任。获国家基金委优秀青年基金、湖北省杰出青年基金,湖北省楚天学子等。Nano Materials Science、Metal、Advanced Powder Materials期刊编委,Engineering青年通讯专家,《金属学报》、《中国激光》“前沿激光制造”子刊青年编委,《中国有色金属学报》青年编委、《机械工程学报》“4D打印技术”客座编辑,《航空制造技术》“增材制造结构创新设计”、《金属学报》“增材制造材料创新设计”专栏客座主编等。近年来,在Materials Today、Acta Materialia等国际期刊发表SCI收录论文80余篇,SCI他引3000+次,封面论文2篇、ESI高被引论文5篇、热点论文1篇,2021年机械工程学报优秀论文,机械工程学报2020高影响力论文(10篇之一),电加工技术与模具40年百篇论文。参与制定3项增材制造相关国家标准。主编学术专著2部(包括ELSEVIER出版英文专著1部)。先后20余次担任国内外学术会议共同主席、分会场主席、委员或邀请报告。主办“第一届全国4D打印论坛”系列会议(2017至今已经举办4届)。相关成果获湖北省技术发明一等奖(排5)、2021“中国有色金属十大进展”(排1),第二届全国源创杯南部赛区二等奖(排1)、中国机械工程学会工作成果奖等奖励。
感谢合作者香港城市大学吕坚院士、佐治亚理工学院Seung-Kyum Choi教授、南京工业大学赵爱国教授、北京卫星制造厂有限公司祁俊峰部长、欧洲杯线上买球协和医院杨操教授、欧洲杯线上买球机械工程学院高亮教授、欧洲杯线上买球物理学院祝雪丰教授、欧洲杯线上买球材料学院姚永刚教授等团队。
作者成员还包括博士后张磊、王晓波,在读博士生范军翔、魏帅帅、张志。
相关文章列表:
1. Zhang L., Song B.*, Shi Y., et al. Acta Materialia, 2022, in press. (IF=9.209)
2. Zhang L., Song B.*, Shi Y., et al. Bioactive Materials, 2022, in press. (IF=16.874)
3. Zhao A., Jia H., Song B.*, et al. Physical Review Applied, 2022, in press. (IF= 4.931)
4. Fan J., Song B.*, Shi Y., et al. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022, 100036.
5. Wang X., Song B.*, Shi Y., et al. Acta Biomaterialia, 2022, 148: 374-388. (IF=10.633)
6. Zhang L., Song B.*, Shi Y., et al. Composites Part B-Engineering, 2022, 236, 109837. (IF=11.322)
7. Zhang Z., Song B.*, Shi Y., et al. Advanced Materials Technologies, 2022, 2200076. (IF=8.856)
8. Zhang Z., Song B.*, Shi Y., et al. Applied Materials Today, 2022, 26, 101268. (IF=8.663)
9. Wei S., Song B.*, Shi Y., et al. Acta Metallurgica Sinica (English Letters), 2022, 35: 397-410. (IF=1.797)
10. Fan J., Song B.*, Shi Y., et al. Materials Today, 2021, 50, 303-328. (IF=26.943)
11. Zhang L., Song B.*, Shi Y., et al. International Journal of Mechanical Sciences, 2021, 197, 106331. (IF=6.772)
12. Zhang L., Song B.*, Shi Y., et al. Acta Biomaterialia, 2020, 112, 298-315. (IF=10.633)
13. Zhang L., Song B.*, Shi Y., et al. Engineering, 2020, 6, 56-67. (IF= 12.834)
14. Zhang L., Song B.*, Shi Y., et al. Journal of Manufacturing Processes, 2020, 56: 1166-1177. (IF= 5.684)
15. Zhang L., Song B.*, Shi Y., et al. Composite Structures, 2019, 226, 111199. (IF=6.603)
16. 宋波*,张磊,史玉升,等. 航空制造技术,2022,65(14):22-33.
17. 张志,宋波*,史玉升,等. 中国激光,2022.
18. 张磊,宋波*,史玉升,航空制造技术,2022,65(14):92-100.
19. 宋波*,卓林蓉,史玉升,等. 电加工与模具,2018,4(06):1-6.
20. 张磊,宋波*,史玉升,航空材料学报,2018,38(03):10-19.
相关发明专利列表:
1. Song B., Fan J., Shi Y., et al. MUTI-SCALE THREE-DIMENSIONAL PENTAMODE METAMATERIAL AND ADDITIVE MANUFACTURING METHOD, US17/401334.
2. 宋波,张磊,史玉升. 一种在增材制造中增强五模超材料两相材料结合力的方法. ZL201811248481.2.
3. 宋波,张磊,史玉升. 一种原位增强五模材料机械性能的激光增材制造成形方法. ZL201910034811.6.
4. 宋波,张磊,史玉升.一种仿海胆刺形连续梯度变化的生物支架及其应用. ZL202011095189.9.
5. 宋波,张志,张磊,史玉升. 一种增强型叠加空心点阵结构及其应用. ZL202010238549.X.
6. 宋波,张志,张磊,史玉升. 一种基于增材制造提高隔热效果的装置. ZL202011576579.8.
7. 宋波,张志,张磊,史玉升. 一种可控电磁屏蔽构件及其制备方法. ZL202011347828.6.
8. 宋波,范军翔,魏帅帅,史玉升. 一种多尺度三维五模超材料及其增材制造方法,ZL202011111080.X.
9. 宋波,魏帅帅,范军翔,史玉升. 变形回复快速响应的镍钛合金构件的4D成形方法及产品. ZL202011361415.3.
10. 宋波,范军翔,史玉升. 一种具有双螺旋卷曲结构的吸声超材料及其制备方法. ZL202010617443.0.
11. 宋波,范军翔,史玉升. 一种吸声性能可调的吸声超材料及其增材制造方法. ZL202011501249.2.
12. 宋波,范军翔,张金良,史玉升. 一种仿笋螺双向低频吸声超材料及其增材制造方法. ZL202210161374.6.
13. 宋波,范军翔,王晓波,蒋疆,张建超,史玉升. 兼具低频吸声与承载的多功能超材料及其增材制造方法. ZL202111300603.X.
14. 宋波,王晓波,张磊,范军翔,祁俊峰,李敬洋,史玉升. 一种半开孔板格超材料及其增材制造方法. ZL202111313165.0.